antony_w (antony_w) wrote,
antony_w
antony_w

Categories:

Конец эпохи Nvidia? Graphcore разработала чипы на базе вычислительных графов



Искусственный интеллект — самая переломная (во всех смыслах) технология нашего времени. Чипы искусственного интеллекта — самая переломная инфраструктура для искусственного интеллекта. Если исходить из этих двух предпосылок, влияние того, что Graphcore планирует массово выпустить в мир, не поддается описанию. Как будут расширяться границы закона Мура с появлением IPU? Какое аппаратное и программное обеспечение нас ждет? Одно можно сказать наверняка: Nvidia стоит бояться и переживать.

Если везением можно назвать умение быть в нужном месте в нужное время, можно сказать, что мы с вами везунчики. Graphcore — популярнейшее название в мире чипов ИИ, уже давно появилось на радарах крупных технических изданий. Издательству ZDnet удалось пообщаться с основателями Graphcore до того, как они сами представили последние новости.

Graphcore, если вы еще не знали, только что получила очередные 200 миллионов долларов финансирования от BMW, Microsoft и ведущих финансовых инвесторов на масштабирование самого продвинутого в мире чипа ИИ. Теперь Graphcore официально «единорог» с оценкой в 1,7 миллиарда долларов. Среди партнеров компании — Dell, Bosch и Samsung. Нетрудно догадаться, что назревает что-то очень большое. Но давайте по порядку.

Узнать, как работает мозг — это одно. Смоделировать чипы — другое

Graphcore базируется в Бристоле, Великобритания, и была основана ветеранами полупроводниковой промышленности Найджелом Туном, CEO, и Саймоном Ноулзом, CTO. Ранее Тун и Ноулз работали с такими компаниями, как Altera, Element14 и Icera, которые достигли общей стоимости в миллиарды долларов. Тун уверен, что они могут — и смогут — перевернуть полупроводниковую отрасль сильнее, чем когда-либо прежде, сломав практическую монополию Nvidia.

Nvidia — главный игрок в области ИИ, благодаря ее чипам GPU, и все это развивается. В этой области есть и другие игроки, но Тун уверен, что только у Nvidia есть четкая, последовательная стратегия и эффективный продукт на рынке. Есть еще Google, который инвестирует в чипы ИИ, но Toon утверждает, что у Graphcore есть ведущее преимущество и фантастическая возможность построить империю с чипами IPU (Intelligent Processor Unit). В качестве примера он приводит успех мобильных процессоров ARM.



Чтобы понять, в чем причина его уверенности, уверенности его партнеров и инвесторов, нам нужно понять, что именно делает Graphcore и что отличает ее от конкурентов. Машинное обучение и искусственный интеллект — самые быстро развивающиеся и переломные технологии. Машинное обучение, которое лежит в основе искусственного интеллекта в наши дни, очень эффективно в нахождении паттернов и закономерностей, и работает на основе комбинации соответствующих алгоритмов (моделей) и данных (обучающих наборов).

Некоторые люди называют искусственный интеллект перемножением матриц. Хотя такие крайние заявления сомнительны, факт остается фактом: большая часть машинного обучения связана с эффективными операциями с данными в масштабе. Именно поэтому GPU так хорошо справляются с нагрузками машинного обучения. Их архитектура изначально разрабатывалась для обработки графики, но показала себя крайне эффективно и в операциях с данными.

Что сделала Graphcore? Инвестировала в совершенно новую архитектуру. Именно поэтому Тун считает, что у нее есть преимущество над другими вариантами. Тун отмечает, что в конкурентной борьбе эффективно строятся специализированные чипы (ASIC), которые хорошо справляются с определенными математическими операциями с данными, оптимизированными под определенные задачи. Но для завтрашних нагрузок это уже не подойдет.

Что же такого особенного в собственной архитектуре Graphcore? Говорят, Graphcore создает нейроморфный чип ИИ: процессор, созданный по образу человеческого мозга, с его нейронами и синапсами, отраженными в архитектуре. Но Ноулз развеивает это мнение:

«Мозг — отличный пример для компьютерных архитекторов в этом новом смелом начинании машинного интеллекта. Но сильные и слабые стороны кремния сильно отличаются от свойств влажной вычислительной начинки. Мы не копировали образцы природы ни в летательных аппаратах, ни в передвижении на поверхности, ни в двигателях, потому что наши инженерные материалы другие. То же самое и с вычислениями.

К примеру, большинство нейроморфных компьютерных проектов выступают за коммуникацию посредством электрических импульсов, как в мозге. Но базовый анализ эффективности использования энергии сразу же заключает, что электрический всплеск (два пика) в два раза менее эффективен, чем передача информации одним пиком, поэтому следование мозгу уже не будет хорошей идеей. Я думаю, компьютерные архитекторы обязаны стремиться узнать, как вычисляет мозг, но не должны его буквально копировать в кремнии».

Нарушая закон Мура, превосходя GPU

Энергоэффективность действительно является ограничивающим фактором для нейроморфных архитектур, но ею все не ограничивается. Комментируя закон Мура, Тун отметил, что мы намного превзошли все ожидания и у нас еще есть 10-20 лет прогресса в запасе. Но затем мы достигнем некоторых фундаментальных ограничений.

Тун считает, мы достигли наименьшего напряжения, которое можем использовать в таких чипах. Поэтому, мы можем добавить больше транзисторов, но заставить их намного быстрее не сможем. «Ваш ноутбук работает на 2 ГГц, у него просто больше ядер. Но нам нужны тысячи ядер для работы с машинным обучением. Нам нужен иной архитектурный процесс для конструирования чипов другими способами. Старые методы не сработают».

Тун говорит, что IPU — это универсальный процессор машинного интеллекта, специально разработанный для машинного интеллекта. «Одним из преимуществ нашей архитектуры является то, что она подходит для многих современных подходов к машинному обучению, таких как CNN, но при это высоко оптимизирована для других подходов к машинному обучению, вроде обучения с подкреплением и прочих. Архитектура IPU позволяет нам превосходить графические процессоры — она сочетает в себе массивный параллелизм с более чем 1000 независимых процессорных ядер на IPU и встроенную память, так что всю модель можно разместить на чипе».



Но как IPU можно сравнить с GPU от Nvidia на практике? Недавно были выпущены некоторые тесты машинного обучения, в которых Nvidia вроде как побеждала. Но как отмечает Тун, структуры данных для машинного обучения отличаются, поскольку они более многомерны и комплексны. Следовательно, с ними нужно работать иначе. GPU очень мощные, но не обязательно эффективные в работе с этими структурами данных. Можно создавать и в 10, и в 100 раз более быстрые модели.

Однако скорость — это еще не все, что нужно для успеха в этой игре. Nvidia, к примеру, преуспела не только потому что ее GPU мощные. Большая часть ее успеха заключается в программном обеспечении. Библиотеки, которые позволили разработчикам абстрагироваться от аппаратных особенностей и сосредоточиться на оптимизации своих алгоритмов машинного обучения, стали ключевым элементом успеха компании.

Революция графов вот-вот начнется

Конечно, вам уже стало интересно, что же это за графы. Какого рода структуры, модели и формализм использует Graphcore для представления и работы с этими графами? Можно ли назвать их графами знаний? Хорошие новости в том, что ждать осталось недолго.

«Мы называем их просто вычислительными графами. Все модели машинного обучения лучше всего выражать в виде графов — так работает и TensorFlow. Просто наши графы на несколько порядков сложнее, поскольку у нас есть параллелизм на несколько порядков для работы с графами на наших чипов», говорит Тун.

Тун обещает, что со временем Graphcore предоставит разработчикам IPU полный доступ с открытым исходным кодом к своим оптимизированным библиотекам графов, чтобы они могли видеть, как Graphcore создает приложения..

Graphcore уже поставляет производственное оборудование первым клиентам в режиме раннего доступ. Сейчас Graphcore продает PCIe-платы, которые готовы к подключению к серверным платформам, которые называются C2 IPU-Processor. Каждая содержит два процессора IPU. Также компания работает с Dell над привлечением корпоративных клиентов и облачных клиентов.

Продукт будет широко доступен в следующем году. Первоначальный фокус будет на дата-центрах, облачных решениях и определенном числе периферийных приложений, требующих больших вычислительных ресурсов, вроде автономных автомобилей. На потребительские устройства типа мобильных телефонов Graphcore пока не ориентируется.

Tags: технологии
Subscribe

Posts from This Journal “технологии” Tag

promo antony_w август 17, 2014 11:48 18
Buy for 10 tokens
Есть блог, в котором написано много постов про роботов: ссылка И там есть несколько статей о замене рабочих мест человека роботами: Уже к 2018 году роботы отберут у человека часть профессий Рабский труд без зарплаты Армия роботов: зачем она нужна обильной людьми Поднебесной и кому может…
  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 2 comments