July 17th, 2020

собака

Появилось зеркало, которое в тысячу раз тоньше человеческого волоса



Исследователи из Германии представили самое тонкое и легкое зеркало в мире — его толщина составляет всего несколько десятков нанометров. При этом свойства предмета не ухудшились.

Физики из Института квантовой оптики имени Макса Планка (MPQ) разработали самое легкое оптическое зеркало. Новый метаматериал изготовлен из одного структурированного слоя, состоящего всего из нескольких сотен идентичных атомов. Атомы расположены в двухмерном массиве оптической решетки. Результаты исследований являются первыми экспериментальными наблюдениями в новом поле субволновой квантовой оптики с упорядоченными атомами. Это зеркало является единственным в своем роде.

Обычно в зеркалах используются высокополированные металлические поверхности или оптические стекла со специальным покрытием для улучшения характеристик при меньшем весе. Но физики из MPQ впервые продемонстрировали, что даже один структурированный слой из нескольких сотен атомов может образовывать оптическое зеркало. Его толщина — всего несколько десятков нанометров, что в тысячу раз тоньше, чем ширина человеческого волоса.

Инженеры отметили, что две главные характеристики зеркала — это регулярный рисунок и подволновое расстояние. Они подавляют диффузное рассеяние света, объединяя отражение в однонаправленный и устойчивый пучок света. При этом из-за сравнительно близкого и дискретного расстояния между атомами входящий фотон может отскакивать туда и обратно между атомами множество раз, прежде чем отразится. Оба эффекта делают зеркало эффективнее.

Диаметр зеркала составляет около семи микрон. Однако устройство, на котором конструировали зеркало, занимает всю территорию лаборатории ученых — он насчитывает более тысячи отдельных оптических компонентов и весит около двух тонн. Поэтому новый материал вряд ли будут использовать для массового производства зеркал.

promo antony_w august 17, 2014 11:48 18
Buy for 10 tokens
Есть блог, в котором написано много постов про роботов: ссылка И там есть несколько статей о замене рабочих мест человека роботами: Уже к 2018 году роботы отберут у человека часть профессий Рабский труд без зарплаты Армия роботов: зачем она нужна обильной людьми Поднебесной и кому может…
собака

Мембранные технологии могут сократить выбросы при переработке нефти



Новая мембранная технология, разработанная группой исследователей из Технологического института Джорджии, Императорского колледжа в Лондоне и компании ExxonMobil, может помочь сократить выбросы углерода и энергоемкость, связанные с переработкой сырой нефти. Лабораторные испытания показывают, что эта технология полимерных мембран могла бы заменить некоторые традиционные процессы тепловой дистилляции в будущем. Исследование публикует журнал Science.

Фракционирование смесей сырой нефти с использованием тепловой перегонки представляет собой крупномасштабный энергоемкий процесс, на который приходится почти 1% мирового потребления энергии: 1100 тераватт-часов в год (ТВтч / год). Это эквивалентно общему количеству энергии, которое потребляет штат Нью-Йорк в год. При внедрении низкоэнергетических мембран на определенных этапах процесса дистилляции новая технология может однажды позволить внедрить гибридную систему очистки. Она может помочь значительно снизить выбросы углерода и потребление энергии по сравнению с традиционными процессами очистки.

Многое в современной жизни завязано на нефти, поэтому разделение ее молекул важно для цивилизации. Масштабы разделения, необходимые для предоставления нефтепродуктов, невероятно велики. Эта мембранная технология может оказать существенное влияние на глобальное потребление энергии и связанные с этим выбросы при переработке нефти, заявляют ученые.

Мембранная технология уже широко используется в таких областях, как опреснение морской воды, но сложность переработки нефти до сих пор ограничивала использование мембран. Чтобы преодолеть эту проблему, исследовательская группа разработала новый спироциклический полимер, который был нанесен на прочный субстрат для создания мембран. Они способны разделять сложные углеводородные смеси посредством давления, а не нагрева.

Мембраны отделяют молекулы от смесей в соответствии с размером и формой. Когда молекулы очень близки по размеру, такое разделение становится более сложным. Ученые смогли сбалансировать множество факторов, чтобы создать правильную комбинацию растворимости, чтобы позволить небольшим молекулам проходить через них легче, чем другим. Исследователи обнаружили, что материалам требовалась небольшая структурная гибкость, чтобы улучшить размерную дискриминацию, а также способность быть слегка «липкими» к определенным типам молекул, которые в изобилии обнаружены в сырой нефти.

После разработки новых полимеров и достижения определенных успехов с использованием смеси синтетического бензина, реактивного топлива и дизельного топлива команда решила попытаться отделить образец сырой нефти и обнаружила, что новая мембрана весьма эффективна для извлечения бензина и реактивного топлива.

собака

Создан гель, который может улучшить доставку лекарств в организм



Новый гидрогелевый материал, способный разрушаться и самопроизвольно реформироваться в желудочно-кишечном тракте, может помочь исследователям разработать более эффективные методы пероральной доставки лекарств. Ученые изучают ковалентные адаптируемые гидрогели (CAH), которые предназначены для высвобождения молекул по мере того, как они теряют полимер в желудке. А затем повторно гелируются самостоятельно, что защищает молекулы и позволяет им оставаться активными для целевой доставки в кишечник. Новое исследование публикует журнал Soft Matter.

Большинство лекарств и питательных веществ всасывается в организм в кишечнике, но, чтобы попасть туда, им нужно пройти через желудок — очень кислую суровую среду, которая может мешать действующим молекулам в фармацевтических препаратах.

Ученые занялись проблемой, изучив ковалентные адаптируемые гидрогели (CAH), которые планомерно высвобождают молекулы лекарства в кишечнике.

Чтобы охарактеризовать материал и дать представление о его фармацевтическом потенциале, исследователи перепрофилировал микрофлюидное устройство, первоначально разработанное в лаборатории Шульца, для исследования тканей и средств по уходу на дому для создания «желудочно-кишечного тракта на чипе». Экспериментальная установка позволяет обмениваться жидкой средой вокруг геля, чтобы имитировать рН среды всех органов в желудочно-кишечном тракте, моделируя, как материал будет реагировать со временем при попадании в организм.

Ковалентный адаптируемый гидрогель демонстрирует самопроизвольное повторное гелеобразование. Как правило, гели не разлагаются, а затем преобразуются без каких-либо дополнительных стимулов. Однако ученым удалось продемонстрировать жизнеспособность нового геля как средства пероральной доставки лекарств и питательных веществ. Теперь ученые начинают работать над исследованиями молекулярного высвобождения и добавлением других компонентов в гель.