Эксперты по обучению машин не знают, как наделить их здравым смыслом

2010-е были благоприятным временем для искусственного интеллекта вследствие развития глубокого обучения — технологии, позволившей обрабатывать огромные массивы данных. Сегодня глубокое обучение — ключевой компонент множества повседневных приложений. Но после десяти лет движения в этом направлении мы по-прежнему очень далеки от создания универсального искусственного интеллекта, равного человеческому. Что же нужно для того, чтобы появился универсальный ИИ? Ответ на вопрос попытались найти участники онлайн-конференции Montreal.AI, состоявшейся на прошлой неделе.
Профессор психологии и директор компании машинного обучения Geometric Intelligence Гэри Маркус, напомнил об основных недостатках глубокого обучения — это необходимость в огромном количестве данных, невозможность быстрого переноса знаний из одной области в другую, непрозрачность и низкий уровень способности осмысления. Будучи критиком подхода применения только глубокого обучения, Маркус предлагает гибридный метод обучения машин, комбинирующий алгоритмы обучения с традиционным программированием, основанном на наборах правил, пишет Venture Beat.
Гибридный метод считают перспективным и другие ученые. Так, Луис Лэмб, соавтор книги «Neural-symbolic Cognitive Reasoning», предложил фундаментальный подход для нейронно-символического ИИ, который основан на логической формализации и машинном обучении.
( Collapse )