antony_w (antony_w) wrote,
antony_w
antony_w

Categories:

Как концепция цифровых двойников может изменить цепочки поставок

Согласно опросу Gartner, проведенному в 2019 году, 13% организаций, реализующих проекты Интернета вещей (IoT), используют цифровых двойников, а 62% находятся в процессе внедрения цифровых двойников.

В прошлом цепочки поставок строились исходя из принципов, когда завод выпускал товары, и продавал их по каналу поставок. Это создавало разрыв между спросом и предложением и неизбежно приводило к плохому управлению запасами, что приводило к их нехватке и расточительству. В 2020 году стало возможным создать цифровую версию цепочки поставок. Используя стратегически единые вычислительные среды и технологии Индустрии 4.0, цифровая цепочка поставок перемещает активы, людей и ресурсы туда, где они необходимы. Благодаря передаче данных через облачные серверы и базы данных сбор информации в цепочке поставок улучшает некоторые производственные практики.


Цифровые двойники позволяют полностью смоделировать цепочки поставок

Например, производители могут проводить стресс-тесты своей цепочки поставок. Пользователи могут эффективно управлять стрессом и измерять реакцию, сочетая параметры стресса с показаниями реакции. Цифровой двойник может помочь преобразовать стрессы компании в количественное представление о реальных последствиях, таких как последствия задержек с поставщиками.

Цифровой двойник цепочки поставок

Итак, что такое цифровой двойник цепочки поставок? Он представляет собой цифровое изображение реальной цепочки поставок организации. Его модель использует предиктивную аналитику, которая собирает данные как из описательных, так и из прогнозных источников, чтобы найти лучший способ действий в любом сценарии, прежде чем применять его к процессу принятия решений.

Используя предписывающие модели, работающие с реальными данными, цифровой двойник цепочки поставок расширяет эту возможность, поскольку входные данные вводятся в модель в режиме реального времени. Например, когда заказ клиента обрабатывается, заказ и связанные с ним транзакции автоматически передаются в цифрового двойника.

Однако, чтобы полностью отразить реальный мир, учитываются и другие факторы, влияющие на цепочку поставок. Например, если производственное оборудование выходит из строя или поставки задерживаются, информация отправляется цифровому двойнику через устройства IoT, такие как датчики. После сопоставления данных цифровой двойник определяет правильное корректирующее действие и поддерживает оптимизацию цепочки поставок.

Предиктивное обслуживание

Производительность оборудования в цепочке поставок имеет решающее значение. Машины, которые регулярно выходят из строя, имеют пагубные последствия, особенно когда необходимо любой ценой избежать простоев.

Для сервисного обслуживания возможно применение 3D-моделирования необходимого оборудования. Оно объединяет машинное обучение для создания цифрового двойника, который используется для мониторинга производительности оборудования, перед запуском алгоритма в режиме реального времени. Данные, полученные из трехмерной модели, в сочетании с искусственным интеллектом (ИИ) затем используются для обслуживания оборудования. Внедрение алгоритмов прогнозирования ИИ позволяет руководителям предприятий применять стратегии прогнозирования к своей цепочке поставок. Обнаруживая схемы отказов и аномалии, изучая эти модели и затем прогнозируя будущие отказы компонентов машин, производители могут заменять оборудование до того, как оно выйдет из строя.

Развертывание цифровизации

Однако для оптимизации производительности цифровой двойник должен отражать любые ограничения и учитывать компромиссы в своей физической цепочке поставок.

Моделирование и предиктивная аналитика являются основными компонентами цифрового двойника цепочки поставок и должны включать языки программирования, позволяющие решать указанные проблемы, такие как языки программирования пятого поколения (5GL). Это важное программное обеспечение позволяет операторам получать подробную информацию о цепочке поставок, ее структуре и формулах для оптимизации процесса принятия решений.

Например, Fleetpride, американская фирма, которая продает запчасти и предоставляет услуги для тяжелых грузовиков и прицепов, построила модель, которая использует исторические данные о доставке для прогнозирования заказов на доставку на склад по дням, неделям и месяцам. Применяя оптимизацию решений к своей модели, можно определить корректирующие действия при работе с клиентами, персоналом и даже при размещении запасов в любой день. Фактически, компания использует предиктивную аналитику для преобразования данных и прогнозных решений в реальные, основанные на фактах планы действий. Они больше не полагаются на интуицию и используют расширенную аналитику, статистическое моделирование и механизм принятия решений для решения задач бизнес-планирования, составления графиков, ценообразования и инвентаризации, и другие предприятия имеют возможность делать то же самое.

Интернет вещей

Идея цифрового двойника не нова, но отличается концепция интеграции данных и входных данных из реального мира. Устройства, подключенные к Интернету вещей, являются строительными блоками цифрового двойника, и интеграция датчиков является ключом к обеспечению такой доступности данных.

Однако проектирование и интеграция этих датчиков может потребовать значительных ресурсов и времени, и могут возникнуть трудности при передаче данных со старых машин, которые не являются технологически совместимыми.

Tags: технологии
Subscribe

Posts from This Journal “технологии” Tag

Buy for 20 tokens
Да-да, речь про помощника Навального, который сейчас находится в изгнании. (фото-скрин: Канал Навальный LIVE) Тут прям серия настоящих шедевров, вскрывающая правду про реальное отношение к нашей стране. Благодарить за такое нужно наших пранкеров Вована и Лексуса, Владимира Кузнецова и…
  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 1 comment