antony_w (antony_w) wrote,
antony_w
antony_w

Categories:

Решена проблема, мешавшая чипам в смартфонах стать мощнее в 1000 раз



Команда инженеров из Университетского колледжа Лондона (UCL) разработала новый подход к созданию нейронных сетей на основе мемристоров, работающих практически без ошибок. До сих пор считалось, что применение мемристоров и безошибочность вычислений при построении нейронных сетей несовместимы. Переход систем ИИ с транзисторной аппаратной базы на мемристоры увеличит энергоэффективность ИИ в 1000 раз, а это приведет к быстрому появлению мощных нейроморфных чипов практически везде — от смартфонов до промышленных систем.

Ученые давно выяснили, что система, в которой используются мемристоры для создания искусственных нейронных сетей, как минимум в 1000 раз более энергоэффективна, чем аппаратная платформа на основе транзисторов. Но перейти на нее не удавалось — она была сильнее подвержена ошибкам. Точность результатов системы на мемристорах значительно уступала точности такой же системы на транзисторах.

Команда из UCL придумала, как решить эту проблему и проведенное моделирование подтвердило, что оно верное, сообщает Tech Xplore. Решение оказалось удивительно простым. Ученые заставили мемристоры работать в нескольких подгруппах нейронных сетей и усреднила их вычисления. Таким образом, общая производительность незначительно снизилась, но количество ошибок сократилось практически до нуля.

Кроме того, ученые протестировали подход на нескольких типах мемристоров и обнаружили, что точность растет при использовании любой модели, независимо от материала или технологии изготовления.

Открытый метод борьбы с ошибками может стыть основой для развития искусственного интеллекта нового поколения.

Появление мемристических нейронных сетей или нейроморфных чипов с энергоэффективностью в 1000 и более раз выше, чем у текущих транзисторных систем, позволит эффективно обучать нейронные сети вообще без подключения к внешним ресурсам. Их внутренних ресурсов будет для этого достаточно. Очевидно, что эта возможность перевернет не одну индустрию.

И ресурс этот обеспечивает сама природа мемристоров — их еще называют «резисторы с памятью», так как они помнят количество электрического заряда, протекавшего через них даже после выключения. При этом мемристоры работают не только в двоичном коде, состоящем из нулей и единиц, но и на нескольких уровнях от нуля до единицы одновременно. Это означает, что каждый бит может вместить больше информации. А с учетом того, что оперативные данные обрабатываются и хранятся в одном месте, их не нужно при проведении расчетов постоянно отправлять в память и извлекать из нее, все это на порядки увеличивает эффективность таких систем по сравнению с транзисторами.

Авторы проекта утверждают, что на данном этапе их ИИ сравнялся с уже существующими нейросетями и выполняет задачи на том же уровне, но это только начало перспективной разработки. Ученые обещают построить первую функционирующую модель на основе мемристоров в течение трех лет.

Tags: искусственный интеллект
Subscribe

Posts from This Journal “искусственный интеллект” Tag

promo antony_w august 17, 2014 11:48 18
Buy for 10 tokens
Есть блог, в котором написано много постов про роботов: ссылка И там есть несколько статей о замене рабочих мест человека роботами: Уже к 2018 году роботы отберут у человека часть профессий Рабский труд без зарплаты Армия роботов: зачем она нужна обильной людьми Поднебесной и кому может…
  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 1 comment