antony_w (antony_w) wrote,
antony_w
antony_w

Categories:

ИИ прогнозирует задержки на железных дорогах



Ученые из Иллинойсского университета в Урбане-Шампейне (UIUC) использовали реальные данные Британских железных дорог и модель искусственного интеллекта, чтобы лучше прогнозировать задержки в железнодорожных сетях. Результаты исследования представлены на Международной конференции IEEE 2020 по интеллектуальным транспортным системам.

За последние 20 лет количество пассажиров, путешествующих по британской железнодорожной сети, почти удвоилось и составило 1,7 миллиарда ежегодно. Очевидно, жители Великобритании полагаются на железнодорожное сообщение и задержки в движении могут нарушить планы многих.

«Мы хотели изучить эту проблему, используя наш опыт работы с графовыми нейронными сетями», — объясняет Хай Тран, член факультета аэрокосмической инженерии UIUC. — Это особый класс моделей искусственного интеллекта, которые фокусируются на данных, представленных в графовых областях».

Графовая нейронная сеть (англ. Graph Neural Network, GNN) — тип нейронной сети, которая напрямую работает со структурой графа. Типичным применением GNN является классификация узлов. Концепция графовой нейронной сети была впервые предложена в 2009 году в работе, которая расширила существующие нейронные сети для обработки данных, представленных в графовых областях.

Граф — это структура данных, состоящая из двух компонентов: вершин и ребер. Граф G описывается множеством вершин (узлов) V и ребер E.

Использование GNN позволяет работать с данными графов, без предварительной обработки. Такой подход позволяет сохранить топологические отношения между узлами графа.

Ученые применили модель свёрточной сети с пространственно-временным графом для прогнозирования задержек в пределах одной из самых нагруженных частей британской железнодорожной сети.

«По сравнению с другими статистическими моделями, эта модель превосходит всех в плане прогнозирования задержек до 60 минут», — подчеркивает Тран.


Предоставлено: Департамент аэрокосмической техники Университета Иллинойса.

На Международной конференции IEEE 2020 по интеллектуальным транспортным системам было представлено исследование «Прогнозирование задержек на железных дорогах с помощью свёрточных сетей с пространственно-временным графом», написанное Джейкобом С.В. Хеглундом, Панукорном Талеонгпонгом, Саймоном Ху и Хай Т. Траном.

Tags: искусственный интеллект
Subscribe

Posts from This Journal “искусственный интеллект” Tag

promo antony_w august 17, 2014 11:48 18
Buy for 10 tokens
Есть блог, в котором написано много постов про роботов: ссылка И там есть несколько статей о замене рабочих мест человека роботами: Уже к 2018 году роботы отберут у человека часть профессий Рабский труд без зарплаты Армия роботов: зачем она нужна обильной людьми Поднебесной и кому может…
  • Post a new comment

    Error

    default userpic

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 1 comment